Diferencias Entre Números Racionales e Irracionales


La diferencia clave entre los números racionales e irracionales es que el número racional se expresa en forma de p / q, don de «p» y «q» son números enteros. En cambio, esto no es posible para el número irracional (aunque ambos son números reales ).

Sigue leyendo y conoce las definiciones, más diferencias y ejemplos basados ​​en ellas.

Ejemplos de números racionales e irracionales

Definición de números racionales e irracionales

Números racionales: Los números reales que se pueden representar en la forma de la razón de dos números enteros, digamos P / Q, donde Q no es igual a cero. Este tipo de números se denominan números racionales .

Números irracionales: Los números reales que no se pueden expresar en la forma de la razón de dos enteros se denominan números irracionales.

¿Cuál es la diferencia entre números racionales y números irracionales?


Tabla comparativa y ejemplos de las diferencias entre números racionales e irracionales:

Números racionalesNúmeros irracionales
Los números que se pueden expresar como una razón de dos números (forma p / q) se denominan números racionales.Los números que no se pueden expresar como una proporción de dos números se denominan números irracionales.
El Número Racional incluye números, que son finitos o de naturaleza recurrente.Estos consisten en números, que son de naturaleza no terminante y no repetitiva.
Números racionales incluye cuadrados perfectos como 4, 9, 16, 25, etc.Irrational Numbers incluye surds como √2, √3, √5, √7 y así sucesivamente.
Tanto el numerador como el denominador son números enteros, en los que el denominador no es igual a cero.Los números irracionales no se pueden escribir en forma fraccionaria.
Ejemplo: 3/2 = 1, 5, 3, 6767Ejemplo: √5, √11

Preguntas frecuentes sobre estas diferencias

¿Cuál es la principal diferencia entre números racionales e irracionales?

Podemos representar números racionales en forma de razón de dos enteros (positivos o negativos), donde el denominador no es igual a 0. Pero no podemos expresar números irracionales de la misma forma.

¿Dar un ejemplo de números racionales e irracionales?

Los ejemplos de números racionales son 1/2, 3/4, 11/2, 0.45, 10, etc.

Los ejemplos de números irracionales son Pi (π) = 3.14159…., Número de Euler (e) = (2.71828…), y √3, √2.

¿Cómo podemos identificar si un número es racional o irracional?

Si un número es un número de terminación o un decimal periódico, entonces es racional, por ejemplo, 1/2 = 0.5.

Si un número es decimal sin terminación y sin repetición, entonces es irracional, por ejemplo, o.31545673…

¿Es 2/3 racional o irracional?

Podemos ver, después de la simplificación, 2/3 es un decimal. Por tanto, es un número racional.

Deja un comentario